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Abstract

Default logic is a formal means of reasoning about defaults: what
normelly is the case, in the absence of contradicting information. Au-
toepistemic logic, on the other hand, is meant to describe the conse-
quences of reasoning about ignorance: what must be true if a certain
fact is not known. Although the motivation and formal character of these
two systems are different, a closer analysis shows that they share a com-
mon trait, which is the indexical nature of certain elements in the theory.
In this paper we compare the expressive power of the two systems. First,-
we give an effective translation of default logic into autoepistemic logic;
default theories can thus be embedded into autoepistemic logic. We also
present a more suprising result: the reverse translation is also possible,
so that every set of sentences in autoepistemic logic can be effectively
rewritten as a default theory. The formal equivalence of these two dif-
fering systems is thus established. This analysis gives an interpretive
semantics to default logic, and yields insight into the nature of defaults
in autoepistemic reasoning.
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1 Introduction

Default reasoning can be informally described as the process of jumping to con-
clusions based on what is normally the case. To say that “power corrupts,” for
example, is to say that for typical z, in typical situations, z will be corrupted by
the exercise of authority.

Default logic [14] is a formalization of default reasoning. An agent’s knowledge
base (KB), its collection of facts about the world, is taken to be a first-order theory.
. Default reasoning is expressed by default rules of the form

a:Mﬁ, (1)

w
which can be read roughly as, “If « is provable from the KB, and /3 is consistent
with it, then assume w as a default.” Unlike ordinary first-order inference rules,
default rules are defeasible: given a KB containing just «, for example, the rule
above would allow the inference of w, but if -7 is added to the IXB, then the default
rule is no longer applicable. Default rules are thus nonmonotonic inference rules.

In default logic, the default rules operate at a metatheoretic level, as they are
not expressed in the language of the KB, and are not inference rules within the KB.
Rather, they can be thought of as a means for taking a KB and transforming it
into another by the addition of sentences that are not logically derivable from the
original. The transformation is defined in terms of a fix-point operator.

This formulation of default reasoning leads us to ask several questions which
do not have readily apparent answers. The first concerns the expressiveness of the
logic. Certain simple types of defaults can be readily stated; for example, “power
corrupts” could be expressed as

Powerful{z) : M Corrupt(z)
Corrupt(z)

: (2)

but it is not clear that more comphcated constructs could be accommodated. One
example is conditional defaults, where a default rule is the conclusion of an implica-
tion; another is a default whose consequent is itself a default. Because the default
rules are not part of the logical language, there is no obvious, straightforward ex-
pression of these concepts.

The second question, related to the first, concerns the semantics of default logic.
Because defaults are expressed as inference rules operating in conjunction with a
fixed-point construction, the meaning of such objects as M S is not clear. In some
recent work, there have been proposals for a semantics for a restricted class of default
theories [8] and for default logic in general [3]. In both cases, the “semantics”



is a reformulation of the KB-transformation induced by the defaults in terms of
restrictions on the models of the KB. Although such a reformulation can provide
an alternative view of the construction of default extensions, it does not provide a
semantics in the sense of providing an interpretation for default rules in a model
structure {(an interpretive semantics). Indeed, because defaults are expressed as
inference rules, they are not amenable to interpretation in this fashion.

Our idea in this paper is to define default reasoning within the theory of the
KB itself, rather than as a transformation of the KB. If we take the sentences of a
KB to be the knowledge or beliefs of an agent, then defaults can be expressed by
referring to what an agent doesn’t know. The default that “power corrupts” could
be stated informally as

If z 1s powerful, then assume z is corrupt
if nothing known contradicts .

(3)

It is easy to see that such reasoning is defeasible in the presence of additional
information about the integrity of z. From a formal point of view, it is clear that to
assert this statement, the language of the KB must be augmented by a construction
that refers to the KB as a whole.

Let us call a theory containing an operator that refers to the theory itself an
indezical theory. We will use the expression L¢ within a theory to mean that the
sentence ¢ is part of the theory. Now we can rephrase the default rule (1) in the
following manner, using the operator L:

LaA-L-BDw. (4)

The intent of a rule of this form is something like: “If « is in the KB, and -f is
not in the KB, then w is true.” The negation sign in =3 arises from the use of the
provability operator L, the dual of the consistency operator M. Because L is an
operator of the KB language, we have been able to express the default within the
language of the KB itself, rather than as a metatheoretic construct.

The introduction of an indexical operator is an added complexity, for now we
allow our initial KB to contain statements not only about the world, but also about
its own contents. Indeed, even interpreting the modal operators of (4) is a prob-
lem. Fortunately, the mathematical properties of indexical theories have recently
been studied by Moore [13] as a formalization for a another type of nonmonotonic
reasoning, called autoepistemic reasoning, in which an agent reasons about the re-
lationship of her knowledge to the world. Moore has derived an elegant and natural
interpretive semantics for indexical theories incorporating the self-referential oper-
ator L. This semantics gives an interpretation to the operator L based on model
structures.



We are naturally led to ask what relationship exists between default theories
and their corresponding expression in AE logic. Are they essentially different, in
the sense that agents using each one would have widely differing sets of beliefs? The
answer, which is the main result of this paper, is no: default logic and AE logic
sanction the same inferences on corresponding initial inputs. This fact has several
important consequences. Since default rules are expressible in AE logie, both default
and autoepistemic reasoning can be combined within this single formalism. Also,
the formal expression of defaults gains the benefits of an interpretive semantics.

A second and more surprising consequence is that AE logic is no more expressive
than default logic, even though the L operator is part of the language: there exists a
translation from every set of AE logic premises into a corresponding default theory.
As we shall see, it is possible by translating the appropriate AE logic statements
to construct default theories with the effect of conditional defaults, defaults whose
conclusion is a default, and so on. The expression of these concepts is still much
more natural in terms of the L operator, but the mathematical properties of the
corresponding default theories are the same.

Of independent interest are some results in the theory of AE logic, especially the
characterization and equivalence of moderately-grounded and minimal extensions,
the definition of strongly-grounded extensions and introspective idempotency, and
the relationship of AE logic to the modal logic of weak S5.

2 Autoepistemic Logic

Autoepistemic (AE) logic was defined by Moore [13] as a formal account of an
agent reasoning about her own beliefs. The agent’s beliefs are assumed to be a
set of sentences in some logical language augmented by a modal operator L. The
intended meaning of L¢ is that ¢ is one of the the agent’s beliefs; thus the agent
could have beliefs about her own beliefs. For example, consider a space shuttle
flight director who believes that it is safe to launch not because of any positive
information, but by reasoning that if something were wrong, she would know about
it from her engineers. This belief can be expressed using sentences of the augmented
language. If P stands for “It is safe to launch the shuttle,” then

-L-P DO P (5)

expresses the flight director’s self-knowledge. Equation (5) is a logical constraint
between a belief state (L—P) and a condition on the world (P).

The primary focus of AE logic is a normative one: given an initial (or base) set
of beliefs A about the world, what final set T should an ideal introspective agent
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settle on? If we restrict ourselves for the moment to languages without the self-belief
operator, then clearly an ideal agent should believe all of the logical consequences of
her base beliefs, a condition sometimes referred to as logical omniscience [5]. More
formally, let the expression I' |= ¢ mean that the sentence ¢ is logically implied by
the set of sentences I'. Then, if the base set is A4, the belief set T of an ideal agent
is given by:

T={¢|AFE¢}. (6)

The presence of a self-belief operator complicates matters. Because the intended
meaning of L¢ depends on the belief set of the agent, the definition of the belief
set itself becomes circular, which necessitates the use of a fixed-point equation to
define 7. In this section we will present this definition and give several alternative
formulations that will prove useful.

2.1 Logical preliminaries

We begin with a language £ for expressing self-belief, and introduce valuations of
L. The treatment generally follows and extends Moore [13], but differs in two ways.
First, the base language is first-order rather than propositional; but this is a minor
change, because no quantifying into a modal context is permitted. Second, ideal
belief sets are defined with a fixed-point equation over valuations of the language.
This definition is equivalent to Moore’s original one, but leads to different insights
on the nature of the ideal belief set, simpler proofs of many resuits, and several
natural extensions.

Let £, be a first-order language with functional terms and a distinguished sen-
tence 1| which is always false (the sentence T is defined as —Ll). The normal
formation rules for formulas of first-order languages hold. A sentence of Ly is a
formula with no free variables; an atom is a sentence of the form P(#y,---,¢,). We
extend £y by adding a unary modal operator L; the extended language is called L.
L can be defined recursively as containing all the formation rules of £y, plus the
following:

If ¢ is a sentence of £, then so is L¢. (7)

An expression L¢ is a modal atom. Sentences and atoms of £y are called ordi-
nary. Note that nestings such as LL¢ are modal atoms (and hence sentences) of
L. Because the argument of a modal operator never contains free variables, there
is no quantifying into the scope of a modal atom, e.g., 3zLPz is not allowed. A
sentence has a modal depth n if its modal operators are nested to a depth of n;
e.g., L(P V LP) has a modal depth of 2. We use the abbreviation £, for the set of
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all sentences of modal depth n or less. Often we will use a subscript to indicate a
subset of sentences based on modal depth; e.g., I', =T'N L,.

From the point of view of first-order valuations, the modal atoms L¢ are simply
nilary predicates. Qur intended interpretation of these atoms is that ¢ is an element
of the belief set of the agent. So we will consider valuations of £ to be standard first-
order valuations, with the addition of a belief set I'. The atoms L¢ are interpreted
as true or false depending on whether ¢ is in I'. To distinguish these valuations, we
will sometimes call them L valuations.

The interaction of the interpretation of L with first-order valuations is often a
delicate matter in this paper, and so a perspicuous terminology for talking about L
valuations is necessary. In particular, it is often useful to decouple the interpretation
of modal and ordinary atoms. First-order valuations are built upon the truthvalues
of atoms: for ordinary atoms, truthvalues are given by a structure (U, ¢, R}, where
@ is a mapping from terms to elements of the universe U, and R is a set of relations
over U, one for each predicate. We will refer to any such structure as an ordinary
indez, and denote it with the symbol I. Modal atoms are given a truthvalue by a
belief set I", which is called a model indexz.

The truthvalue of any sentence in £ can be determined by the normal rules for
first-order valuations, given an ordinary and modal index. We write =;r ¢ if a
valuation (I,T'} satisfies 4. The valuation rule for modal atoms can be written as

le;r Lo ifandonlyif $el. (8)

A valuation that makes a every member of a set of sentences true is called a
model of the set. A sentence that is true in every member of a class of valuations is
called velid with respect to the class. The following classes of valuations are useful:

E=r  valuations with modal index T’
= all valuations (9)
Yk modelsof T .

A sentence ¢ is a first-order consequence (FOC) of a set of sentences X if it is true in
all models of . X is closed under first-order consequence if it contains all sentences
that are true in all of its first-order models.

2.2 Autoepistemic extensions

Now we return to the original question of what an ideal introspective agent should
believe. Obviously, we want to use equation (6), with an appropriate choice for
logical implication. Given that the intended meaning of L is self-belief, it becomes



obvious that we should consider all models in which the interpretation of L¢ is the
belief set of the agent itself; that is, the valuations we consider all have a modal
index that is the belief set of the agent. Following Moore, we call such valuations
autoepistemic (or AE), and define the extension of a base set A of beliefs as follows:

DErFINITION 2.1 Any set of sentences T which salisfies the equation

T={¢|AFré)}

s an autoepistemic extension of A.

This is a fixed-point equation for a belief set T, and is a candidate for the belief
set of an ideal introspective agent with premises A. It is similar to the belief set
definition for a nonintrospective agent (Equation 6) in that it contains A and is
closed under first-order consequence. As we will see in later sections, there are
other conditions that we may want extensions to satisfy if they are to be considered
as ideal belief sets.

Defining AE extensions in this manner gives us an alternative, compact expres-
sion of the stable ezpansions of Moore’s original exposition [13]. He defines a set of
sentences T of £ as sound with respect to the premises A if every AE valuation of
T (that is, every L valuation with modal index T') that is a model of A is also a
model of T. T is semantically complete if T contains every sentence that is true in
every AE model of T. If T is sound and complete with respect to A, it is called a
stable expansion of A.

It is easy to verify from the fixed-point equation that every AE extension is sound
and complete with respect to A. Further, any stable expansion of A also satisfies
the fixed-point equation. Hence stable expansions are exactly AE extensions.

EXAMPLE 2.1 A base set A may give rise to one or several AE extensions, or
to none. As we show below, any set of ordinary sentences has exactly one
extension. The extension for the base set A = {P} contains all the first-order
consequences of P, but no other ordinary formulas. It contains modal atoms
of the form L¢, where ¢ is a FOC of A, and —~L1, where 1 is not a FOC of
A.

Any set of first-order inconsistent sentences gives rise to the same AE exten-
sion, containing all sentences. This is the only AE extension that contains
the false sentence L.

The base set A = {LP} has no extensions. For suppose T is such an exten-
sion; either P € T or P ¢ T. Clearly the latter cannot be the case, for then
for any sentence ¢, A |=1 ¢ (because =y A is false for any I). Now suppose
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P € T. In this case, we can construct an interpretation that satisfies A but
falsifies P, namely one in which I makes P false. Therefore it cannot be that
A =7 P, and so P is not in T, a contradiction.

The base set {LP D P} has two extensions, one of which contains P, and
the other of which does not.

The base set {-LP D @, ~LQ O P} has two extensions; in one of them LP
is true and L() is not, and in the other the reverse.

Suppose an agent has only ordinary sentences in her base set A. These sentences
determine a unique extension for the agent. This proposition was proven indepen-
dently by Marek [9]. (To make the development of this paper clearer, we include
proofs of propositions in an appendix).

PROPOSITION 2.1 If A is a set of ordinary sentences, it has ezactly one AE ex-
tension T. Ty is the first-order closure of A.

We now consider an alternative semantic characterization of AE extensions. In
Definition 2.1, an extension T is defined using the operator =7, which incorporates
T itself. However, if the definition used the simple validity operator |=, self-reference
would be eliminated, and a proof-theoretic analog for = could be used. Note that
in =7, the modal index of the interpretation gives truthvalues to all atoms of the
form L¢, according to whether ¢ is in T or not. Let LT stand for the set of formulas
{L¢é | $ € T}, and =LT for {~Lé | 6 € T}. The sets LT and —~LT are satisfied
only by the interpretations whose modal index is T; hence LT U -LT k= 4 if and
only if =1 ¢. This gives the following alternative characterization of extensions:

PROPOSITION 2.2 A set T is an AE eztension of A if and only if 1t satisfies the
equation

T={¢|AULTU-LT ¢} .

Essentially, the self-referential part of the definition has been transferred from
the implication operator to the set of assumptions LT and —~LT. Note that there
is a trade-off between the strength of assumptions and of the implication operator:
in substituting the weak operator |= for =7, we were forced to introduce the strong
assumptions LT and ~LT to eliminate unwanted models.

Moore has called belief sets defined by the above equation grounded in A, be-
cause they are derived from A and assumptions about self-belief. This notion of
groundedness is a fairly weak one, in that the allowable assumptions are very lib-
eral — an agent is able to assume a self-belief in any proposition as a basis for the



derivation of beliefs. In later sections we will define two strengthenings of ground-
edness; to distinguish Moore’s definition, we will call extensions weakly grounded if
they obey the equation of Proposition 2.2.

It is possible to modify the above equation by strengthening the implication
operator (still avoiding self-reference) and weakening the assumptions. This gives
us yet another semantic characterization of AE extensions. However, we first need
to introduce and analyze a special type of belief set, called a stable set.

2.3 Stable sets

Following Stalnaker [16], we call a belief set ' stable if it satisfies the following three
properties:

1. T is closed under first-order consequence.!

2. If ¢ €T, then L¢ €T.
3. If¢ g7, then ~Lop eT.

Given Proposition 2.2, it is clear that AE extensions must be stable sets. They are
closed under first-order consequence because they are defined using the operator k;
and the presence of LT and ~LT guarantees that properties (2) and (3) above are
satisfied. Thus we have:

PROPOSITION 2.3 (MOORE) FEvery AE eztension of A is a stable set containing
A.

The strict converse of this proposition is not true, since there can be stable sets
containing A that are not AE extensions of A. The simplest example is A = {LP},
which has no AE extension (see Example 2.1). Yet there are many stable sets that
contain LP.

A partial converse is available if we consider stable sets as AE extensions of their
own ordinary sentences.

PROPOSITION 2.4 Every stable set I' 1s an AE exitension of I'y.

Stable sets are thus AE extensions of their ordinary sentences. From Proposition
2.1, we know that every such AE extension is unique; hence every stable set is
uniquely determined by its ordinary sentences.

IStalnaker considered propositional languages and so used tautological consequence.



PRrROPOSITION 2.5 (MOORE) If two stable sets agree on ordinary formulas, they
are equal.

The set of ordinary formulas contained in a stable set is closed under first-
order consequence. Different stable sets thus have different sets of first-order (FO)
closed ordinary formulas. We now show that stable sets cover the sets of FO-closed
ordinary formulas; that is, every such FO-closed set is the ordinary part of some
stable set. |

PROPOSITION 2.6 Let W be e set of ordinary formulas closed under first-order

consequence. There i3 a unique stable set ' such thet Tg = W. W 1is called
the kernel of the stable set.

The stable set whose kernel contains the element | is the set of all sentences of
L. This is the unique inconsistent stable set.

We are now ready to give a third semantic characterization of AE extensions.
Since AE extensions are stable, let us consider restricting the range of modal indices
on the logical implication operator to just stable sets; we indicate this by Fss.
From Proposition 2.5, we know that the ordinary formulas of a stable set uniquely
determine it. As usual, let Ty be the set of ordinary formulas of T, and Ty the
set of ordinary formulas not in T. Then, if T is stable, it must be the case that
=7 is equivalent to LTy U LTy |=ss, because LTy and — LTy specify only those
models in which the modal index is the unique stable set containing exactly the
ordinary formulas Ty. This suggests how we can replace =7 in the definition of AE
extensions.

PROPOSITION 2.7 A set T 13 an AFE eztension of A if and only if it satisfies the
equation

T={¢| AULToU-LT [=ss ¢} -

By using a stronger type of implication (}=ss over stable sets), we have been able
to eliminate all self-referential assumptions except for those involving the ordinary
formulas of T. Proposition 2.7 also hints that the nesting of L operators gives no
extra expressive power to the language, since stable sets are characterized by giving
the sets LTy and =LTy,. Indeed this is so, and we will prove it in section 3, when
we have introduced proof-theoretic analogs to the semantic fixed-point equations.
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2.4 Moderately-grounded extensions

One way of evaluating the fixed-point equations in Propositions 2.2 and 2.7 is by the
type of reasoning they sanction for introspective agents. So, according to Proposi-
tion (2.2), an agent is justified in believing all of the first-order consequences of her
base set A and the assumptions LT and =LT. As we have noted, this is a fairly weak
groundedness condition, and we might want the belief sets of ideal reasoning agents
to obey stronger constraints. Consider, for example, the base set A = {LP D P}.
A has two AE extensions, which we call T and 7" (see Example 2.1). T contains P
and LP, while 7% does not contain P, but has =LP. The difference between these
extensions lies in whether LP is introduced as an assumption in the fixed-point
equation of Proposition 2.2. For the belief set T', the agent’s belief in P is grounded
in her assumption that she believes P. If she chooses to believe P, she is justified
in believing it precisely because she made it one of her beliefs. This certainly seems
to be an anomolous situation, since the agent can, simply by choosing to assume a
belief or not, be justified in either believing or not believing a fact about the real
world.

We would like to define a stronger notion of groundedness to eliminate this
circularity. Now consider the belief set definition given in Proposition 2.7:

T={¢| AULToU~LT, [=ss5 ¢} -

The set of ordinary sentences in the belief set is Td. LTy is the assumption that the
agent believes all of these sentences. There would be no circular justifications if we
replace LTy by LA in the fixed-point definition. In this way we are assured that
the derivation of facts about the world does not depend on the assumption of belief
in those facts. The assumption of A is necessary because an ideally introspective
agent should at least believe that her base beliefs are beliefs.

From this discussion, we can define the following notion of moderately grounded.

DEFINITION 2.2 A set of sentences I' is moderately grounded in A if it obeys the
equation

Sets that are moderately grounded in A4 are also AE extensions of A, as we will
shortly show. However, not every AE extension is moderately grounded.

EXAMPLE 2.2 The base set A = {LP D P} has two extensions, but only one
of them is moderately grounded. The extension containing P cannot be

moderately grounded, because P cannot be derived without the assumption
of LP.

11



A more complicated case is the base set A = {LP D Q, L D P}. Again
there are two extensions, one containing the ordinary formulas P and @, and
one without them. For the former, LP and L must be assumed together
in order to justify P and ¢}. Because they cannot be derived without this
assumption, this extension is not moderately grounded.

All extensions of the set of ordinary formulas 4 are moderately grounded,
because every ¢ € Tj is in the first-order closure of A and so in the stable
set containing LA.

Moderately grounded sets are conservative in what they assume about the world,
given the base beliefs. As shown in example 2.2, the base set {LP O P} has
only one moderately grounded extension, for which P is not a belief. In fact,
moderate groundedness is closely related to another concept, the minimality of
ordinary sentences in an extension.

DEFINITION 2.3 An AFE eztension T of A is minimal for A if there is no stable
set S containing A such that Sy C Tp.

Minimal extensions guarantee that there is no other possible belief set that
makes fewer assumptions about the world, while at the same time containing A and
satisfying the stability conditions for introspection. Minimal extensions are thus
appealing candidates for ideal introspective belief sets. '

EXAMPLE 2.3

The base set A = {LP O P} has a single minimal extension, the one that
doesn’t contain P. Note that there can be more than one minimal extension
for a given base set: A = {-LP O @, ~L@ O P} has two extensions,
both of which are minimal for A. But a base set which has extensions
does not necessarily have any minimal extensions: the base set A = {LP D
P, LP > @, LQ} has one extension containing both P and @, but no minimal
extensions, since the stable set whose kernel is the first-order consequences
of ¢} contains A, but is not itself an AE extension of A.

We now prove that, in fact, the minimal AE extensions of 4 are exactly the sets
moderately grounded in A. Thus we have two independent motivations for choosing
moderate groundedness as a condition for ideal belief sets.

PROPOSITION 2.8 A set of sentences 1s moderately grounded in A if and only if it
s ¢ minimal AE eztension of A.

12



There is an interesting connection between stable sets and minimal AE exten-
sions. By analogy with Definition 2.3, we define a minimal stable set for A as
follows:

DEFINITION 2.4 A stable set S i3 minimal for A if S contains A and there s no
other stable set S' containing A such that 5'¢ C Sp.

From the definitions, it is obvious that every minimal AE extension for A is a
minimal stable set for A. The converse of this is not true, since there are minimal
stable sets for A which are not AE extensions of A (see the discussion following
Proposition 2.3). However, if a minimal stable set for A is an AE extension, then it
must be 2 minimal extension, since there are no other stable set containing A with
a smaller kernel.

3 Proof Theory

We now examine proof-theoretic analogs to the semantics of AE extensions. The
immediate reason for this examination is to establish a normal form for base sets that
will be useful in proving the correspondence between AE and default extensions. A
longer-term goal, and one which we will not pursue here, is to understand how an
agent can reason about and justify her own beliefs, starting from an initial set, by
using rules of inference.

3.1 Proof-theoretic fixed-points

The simplest analog is to replace the logical implication operator = in Proposition
2.2 by a first-order deduction operator F. There are sound and complete systems
of first-order deduction, that is, the derivations of such systems are exactly the
first-order consequences. So we have the following proposition:

* PROPOSITION 3.1 (MOORE) A set T is an AE extension of A if and only if 1t
satisfies the equation

T={¢|AULTU-LTF ¢}.

Moore originally proved this theorem for the case of a propositional base lan-
guage. It gives a completely proof-theoretic characterization of AE extensions.
Unfortunately, it is still a fixed-point equation, and so does not yield a constructive
method for finding extensions.
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Finding a deductive analog to the operator f=ss is more difficult, because it
involves logical implication over modal indices that are stable sets. The correct
logic is a modal system known as K45. For those familiar with modal logic, K45
is a weakening of the well-known modal system S$5; it is appropriate for belief, as
opposed to knowledge, because beliefs can be false. The development of this result
is somewhat long, and involves exploring the connection between stable sets and
the possible-worlds semantics for S5. _

Possible worlds have been used as a semantical basis for a variety of epistemic
logics (those dealing with knowledge or belief).? In this approach, an agent’s beliefs
are represented by a set of worlds W, those that are compatible with her beliefs.
Each world contains a first-order valuation.

Now suppose an agent has a base set A consisting entirely of ordinary sentences.
We define the set of worlds W compatible with A as all worlds with valuations that
make every element of A true. Because each world has a first-order valuation, all
of the first-order consequences of A will also be true at each world. On the other
hand, for every sentence ¢ which is not a first-order consequence of A, there must
be some world in which —¢ is true, or else ¢ would also be a belief.

This takes care of beliefs which are ordinary formulas; what about self-beliefs?
Since we assume that the agent is ideally introspective, L¢ should be a belief (and
hence true in all worlds) just in case ¢ is a belief. So the semantics of belief atoms
is given by: )

Loistrueinw if Vw' € W. ¢istrueinw’. (10)

A structure defined by a set of possible worlds and the truth-recursion rule (10)
is an S5 interpretation. Let us call the set of sentences true at every world in W an
S5 set, and if W was generated by a set of ordinary sentences A, an S5 set for A.
These sets have the following properties:

1. If W was generated by A, the ordinary formulas in the set are just the first-
order consequences of A.

2. The set'is closed under first-order consequence.
3. If ¢ is in the set, then L¢ must also be, according to (10).

4, If ¢ is not 1n the set, then —L¢ must be, because there is some world at which
¢ is true.

These are exactly the conditions for stable sets, so every S5 set must be stable.
The converse is also true, namely, every stable set is an S5 set. Let A be the kernel

A good overview for computer science applications is given by Halpern and Moses [4].
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of a stable set S. There is an 55 set S’ for A, which by the above conditions is also
a stable set whose kernel is A. From Proposition 2.5, S and 5’ are identical. Hence
we have the following equivalence between stable sets and S5 sets:

PROPOSITION 3.2 A set is stable if and only if it is an S5 set.

The relationship between stable sets and 55 structures has been noted by others,
and a version of this proposition was originally proven by Moore, Halpern and
Moses, and Fitting (see [11, p. 7]).

The equivalence between S5 sets and stable sets leads to an alternative form of
the =55 operator. Let us define an S5% wvaluation (w, W), where w is a possible
world, and W is a set of possible worlds (perhaps containing w), by the truth-
recursion rules:

Ewwy ¢ iff ¢ is true in w, for ordinary ¢
|=(w,W) Ly iff forallw' e W, |=(w,‘w) ¢ (11)

If a sentence ¢ is valid in all S5 valuations, we write = g5+ $.2

PROPOSITION 3.3 For any ¢ € £, g5+ ¢ if and only if =55 6.

We now have equivalence between validity in possible-worlds structures, and
validity in stable-set L valuations. There is a large body of literature about possible-
worlds structures which we can draw on to derive the correct proof theory of S5
valuations. First, we must relate S51 valuations to the usual form of possible-worlds
semantics, Kripke stuctures.

A Kripke structure {w, W, R) consists of a distinguished possible world, a set of
possible worlds (containing w), and a binary relation R among the elements of W
(the accessibility relation). The truth-recursion rule is:

Fuwwa ¢ i ¢ is true in w, for ordinary ¢
Ewwary L if for all w' such that wRw', Fpw,ry ¢ (12)
Different classes of Kripke structures are generated by restrictions on the form of
the accessibility relation. The condition which corresponds to S5 valuations is
that R be transitive and euclidean (aRb and aRe implies bRc); let us call these TE
valuations. We now prove that TE and S5% valuations are the same.

385t valuations are closely related to the model descriptions of Levesque [7]. The only significant
difference appears to be that he assumes W is always nonempty; this corresponds to eliminating the
inconsistent S5 set.
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LEMMA 3.4 Let R be an equivalence relation on W, and let the successors of w
be the subset W' C W. Then the Kripke valuation {(w, W, R) is equivelent to
the S5 wvaluation (w, W').

PROPOSITION 3.5 A waluation is an S5% valuation if end only if it i3 a TE volu-
ation.

The correct proof theory for Kripke models whose accessibility relation is tran-
sitive and euclidean is a system called K45, or weak S5 (see Chellas [2]). Here is
the axiomatization for propositional Lg.

DEFINITION 3.1 By the system propositional K45 we mean the following set of
azioms and inference rules:

all tautologies

L(¢ D) > (Lo D L) Dist

L¢DLLg 4

-=L¢ D L-L¢ 5

9 60 MP
Y

—1-% Nec

The distribution schema ( Dist) says that K45-theorems are closed under modus
ponens. Axiom 4 states that if ¢ is true at every world, then so i1s L¢; and Axiom 5
that if ¢ isn’t true at some world, = L¢ must be true at every world. Modus ponens
and necessitation are the rules of inference. Necessitation and the distribution
schema ensure that all worlds are closed under tautologous consequence.

For a first-order base language, we would modify the provision of all tautologies
to a suitable generator of first-order valid sentences. We write I" Fyq5 ¢ if (71 A
Y2 A--- Avn) D ¢ is a theorem of K45, for some finite subset {7, ...y} of T'. It is
known that K45 is sound, complete, and compact with respect to TE valuations;
hence I' =15 ¢ if and only if T Fgy5 ¢.

Now we can give the proof-theoretic analogs to Propositions 2.7 and 2.8.

PROPOSITION 3.6 A setT is an AE extension of A if and only if it satisfies the
equation

T={¢|AULTLU-LToFgys 4} .

It is a minimal (moderately-grounded) eztension of A if and only if it setisfies
the equation
T={¢| AULAU-LTyFgys ¢} .

16



3.2 Normal form

Normal form significantly reduces the conceptual complexity of AE sentences, since
we need not be concerned with nested modal operators. It is essential to the notion
of strong groundedness in the next subsection, and to the translation of AE logic
into default logic.

The following two facts about K45 theories are useful in establishing a normal
form:

1. Every AE sentence is equivalent to a sentence containing modal atoms only
of the form L¢ or —~L¢, where ¢ is an ordinary sentence.

2. L¢ A Lip is equivalent to L(¢ A ¥).

The first of these facts enables us to consider only base sets A drawn from £,.
As we hinted in the last section, the nesting of L operators lends no extra expressive
power to the language, since they can always be re-expressed in terms of £;.

In deriving a normal form for a set of sentences A, we first show that every
sentence from £, has an equivalent form in which no modal operator appears in the
scope of a quantifier, i.e., it is a boolean combination of modal atoms and ordinary
sentences,

PROPOSITION 3.7 Every sentence of L, is equivalent to a sentence of the form

(Ll le) A
(Lz VLU2) A
. A

.(..Bn V wy)

where each L; is a disjunction of modal literals on ordinary sentences, and
each w; 13 ordinary.

Next, we show that any modal atom with nested modal operators is equivalent
to a sentence from £;.

PROPOSITION 3.8 Evwery modal atom L, where ¢ is from Ly, 13 equivalent to a
sentence of L;.

EXAMPLE 3.1 Let us reduce the following sentence to one from £;.

PA-L(I-QVLQ) D ~L-QA-LQ
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Concentrating on the second part of the antecedent, we have:

-L(L-Q V LQ) =k45
~(L-Q V LQ) =gq5
~L-Q A-LQ

Substituting into the original sentence, we get:
PA-SL-QA-LQ D -~L-QA-LQ ,
which is just a tautology.

We are now ready to define normal form for sets of AE sentences. By successively
applying Proposition 3.8 to a sentence of £, all nested modal operators can be
eliminated. Using Proposition 3.7 and the fact that L¢ A Ly = L(¢ A o), any
sentence of £, can be converted into a set of simple disjunctive sentences.

PROPOSITION 3.9 Every set A of L-sentences has a K45-equivalent set in which
each sentence i3 of the form

-LaVvLfV---VLE, Vw, (13)

with o, f;, and w all being ordinary sentences. Any of the disjuncts, except
for w, may be absent.

3.3 Strong groundedness

Consider the following base set:*

~LP D Q

ILPOP (14)

This base set has two moderately grounded extensions, which we call T and T7. T
contains ¢} and =L P, while 7Y has P and ~L(Q). It is easy to see how T is grounded:
assuming L P, @ is derivable from the base set. On the other hand, it is not clear
how, in T', P can be derived from the base set and -L{. But recall that in the
definition of moderately grounded (2.2), both the base set 4 and LA are present.
In K45, L{(—~LP D Q) is equivalent to ~LQ O LP; from -LQ, it is possible to derive
LP; and from LP 5 P, we arrive at P.

4This example was suggested by Michael Gelfond and Halina Przymusinska in a private
communication.
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There is something curious about this reasoning, because LP is derived before
P is. It is as if an agent, in the course of reasoning, arrives first at the point
of believing “I believe that P,” without first having come to believe P itself. In
defining moderately-grounded extensions, we eliminated one possible way that this
could occur, namely using the assumption of LP to justify belief in P. But there
are other means by which an agent might arrive at a belief in LP before P, as the
above example shows. Here it is the assumption of =L@ that leads to the derivation
of LP, without having derived P.

So we seek a further notion of groundedness, which we call strong groundedness,
in which every ordinary sentence ¢ has a derivation that does not depend on Lé¢.
The most straightforward approach would be to exclude sentences such as LP O P
above, which clearly expresses the derivation. The problem here is that LP O P
may not be explicitly represented: we could replace it, for example, by the chain
LP D G, L@y D Qe ..., LY, D P, or even more complicated constructions, so
just ruling out sentences of the form LP O P will not suffice.

The solution is to break the derivation of ¢ from L¢ by never allowing L¢ to be
derived, except as a consequence of the derivation of ¢. There is a simple way to
accomplish this. Note that in the above example, 7" does not contain ). Hence the
first sentence of the base set, =LP D @, is not used to derive §. Rather, given =L@,
it can be used (via L(—~LP D Q) = LG D LP) to derive LP. Now suppose a base
set A is in normal form, so all sentences are of the form - LaV LB V---V LB, Vw.
We want this sentence to be used only for the derivation of w, the ordinary formula.
We will call an extension strongly grounded if all of its base sentences are used in
this way.

DEFINITION 3.2 Let A be a set of AE sentences in normal form, and let T be an
extendion of A. Let A’ be the set of sentences of A whose ordinary part i3
contained in T. Then T 1is strongly grounded in A if and only if

T={¢|AULAU-LT, ss ¢} -

Strongly grounded extensions have some curious properties. First, we show that
every strongly grounded extension is moderately grounded {(and hence minimal).

PrOPOSITION 3.10 If T i3 a strongly grounded eztension of A, it is moderately
grounded in A.

Not every moderately-grounded extension is strongly-grounded; the minimal
extension T" in the example above is not strongly-grounded.
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One of the nice properties of moderate groundedness is that it is insensitive to
the syntactic form of the base set. If two base sets A and A’ are K45-equivalent,
then they have the same moderately-grounded extensions. However, they do not
necessarily have the same strongly-grounded extensions. For example, consider the
following two equivalent normal-form base sets:

P
A_{LPVL}
(15)
] "LPVP
| LPV L

They both have one extension, which is moderately grounded (LP V L is equivalent
to LP). This extension is strongly grounded for A, but not for 4’, since eliminating
LP V 1 leaves no way to derive P.

So strong groundedness is at least partially a syntactic property of AE base sets,
depending on the exact form of the sentences. This seems inevitable if we want to
formalize the notion that ¢ be derived independently of L¢, since the notion of
derivation itself is a syntactic one. This idea — that the form of the sentences
in a KB is important for the derivation of answers from the KB — is neither
unfamiliar nor undesirable, and in fact has been at the center of the earliest uses of
specialized deductive mechanisms in Al. There is even a name for systems of this
sort: procedural deductive system (see Moore [12]). The main characteristic of such
systems is the presence of several syntactic varieties of implication, all of which have
the same semantics, but different procedural interpretations in derivations: forward
chaining, backward chaining, and the like. The form in which an implication is
expressed has a great influence on the derivational behavior of the system. In like
manner, the exact expression of self-belief in AE sentences can have an effect on
whether an extension is strongly grounded or not.

Strongly grounded extensions enjoy one useful property that moderately grounded
ones do not: they are insensitive to the addition of the schema L¢ O ¢ to the base
set. The only way L¢ could be derived in a strongly-grounded extension is if ¢ is
derived independently; hence L¢ D ¢ will never be used to derive ¢, and cannot
cause the derivation of any new ordinary sentences. Thus T is a strongly-grounded
extension of A if and only if it is a strongly grounded extension of AU L¢ D ¢. We
call this property introspective idempotency.
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3.4 Summary of groundedness results

There are three notions of groundedness for AE extensions. Every AE extension T
of a base set A is weakly grounded, that is, it satisfies the equation

T={6|AULTU-LT = ¢}.

Moderately-grounded extensions eliminate all assumptions of positive modal
atoms, and use a stronger notion of logical consequence:

T={¢|AULAU—:LT0 Ess 45}

All moderately-grounded extensions are weakly grounded, but the converse is not
necessarily true. An alternate characterization of moderate groundedness is pro-
vided by a minimality condition: the moderately-grounded extensions of A are just
those extensions which are minimal in their kernels (see Proposition 2.8).

Strong groundedness is partially a syntactic concept, based on the normal form
for AE sentences. Let A’ be all sentences of A in normal form whose ordinary
sentence is contained in 7. Then T is strongly grounded if

T={¢|AULAU-LT, =ss ¢} -

All strongly-grounded extensions are moderately grounded, but the converse is not
necessarily true.

4 Default Logic

We briefly review the logic of default theories. As defined by Reiter [14], a default
theory is a pair (W, D), where W is a set of first-order sentences and D is a set of
defaults, each of which has the form

a MﬁlaMﬂ23"'Mﬁn

w

A default d is satisfied by a set of sentences T if either (1) @ is not in I' or some —j;
is in I" (the premisses of the rule are not satisfied), or (2) w is in I' (the conclusion
is satisfled). A default extension of (W, D}, informally, is a minimal set of sentences
containing W, closed under first-order consequence and satisfying all the defaults
D.

If none of a, §;, or w contain free variables, then the default is called closed.
An open default is treated as a schema for the set of closed defaults that are its
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substitution instances. We thus need consider only closed defaults, as long as we
allow default theories to contain a denumerably infinite set of them.

Default extensions share many of the properties of AE extensions. There may
be one or many extensions of a default theory, or none. The following examples are
analogous to the AE extensions in Example 2.1.

EXAMPLE 4.1 The default extension for the theory ({P}, 0} (no defaults) is ex-
actly the first-order consequences of P,
The theory (@, P : /P) has one extension, the set of all first-order valid sen-
tences. P is not an element of this extension. This differs from the AE base
set {LP O P} which has an extension containing P.
The theory (8, {M-P/Q, M-Q/P}) has two extensions; in one of them, P
is true and @ is not, and in the other the reverse.

These examples are instructive by comparison to AE extensions. If the theory
(W, D) contains no defaults (D empty), then there is exactly one extension, which
is the first-order part of the AE extension of W. In general, a default of the
form a : MfB/w corresponds to the AE sentence La A =~L-f D w; thus, in the
third default theory of the example, there are two default extensions, corresponding
to the first-order parts of the two AE extensions of {-LP O @, -LQ@ D> P}.
However, note the difference in the case of the second default theory of this example.
The default P : /P has only one extension, in which P does not appear. The
AE set {LP D P} has two extensions; the one in which P appears arises from
the ability of AE extensions to support circular justifications (assuming LP, the
sentence LP O P gives a derivation of P). So although it appears that default
extensions have corresponding AE extensions for a suitable transformation of the
defaults, not all AE extensions will have corresponding default extensions. In fact,
as we show below, default extensions correspond to strongly grounded AE extensions.

Default extensions are the fixed points of an operator I'(V'). This operator is
meant to formalize the informal criteria given above for the extensions of {W, D),
namely, it should contain W, be closed under first-order consequence, and satisfy all
of D. Let V be an arbitrary set of first-order sentences. Then I'(V') is the smallest
set satisfying the following properties:

D1. W C T(V)

D2. T'(V) is closed under first-order consequence.’

5In the original definition, this is stated in terms of deduction rather than logical consequence.
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D3. Ho: MB/weD,acT(V),and - €V, then w € T(V).

Extensions are fixed-points of I', i.e., any set F satisfying £ =T'(E). As a fixed-
point definition, it is similar to the fixed-point account of minimal AE extensions
(Proposition 2.8). The parameter of I'(V') essentially fills the role of the assump-
tions —LTy, since =3 must not be present in order for the default to be satisfied.
Minimality is part of the definition of I'(V') (the least set satisfying the conditions
D1-D3); if it were excluded, then default extensions corresponding to nonminimal
AFE extensions would be present.

5 Default and AE Extensions

In this section we explore the relationship between default and AE extensions.

5.1 Translations

In standard mathematical reasoning, to compare a formal systems (}; to another
system @), it is necessary to provide a sentence-to-sentence translation from the
language of ¢} to the language of ()2 (see Boolos [1, p. 46]) The difficulty here is
that the lenguage of the two formalisms is different: default theories are first-order
but contain inference rules with a metatheoretic operator M, while AE logic has a
modal operator L in the language itself. How do we go about comparing the two?

Both formalisms have in common the notion of an ezfension. In AE logic,
an extension is a set of sentences in a modal language. We have shown that AE
extensions are always stable sets, and so are uniquely determined by their kernel,
the set of ordinary formulas of the extension (see Propositions 2.5 and 2.6); further,
this kernel is closed under first-order consequence. In default logic, an extension is
also a set of first-order sentences closed under FO-consequence. If we choose the
first-order language of default logic to be the same as the base langauge £y of AE
logic, then there is a natural notion of equivalence between the two: we will say
that an AE extension is the same as a default extension if the latter is the kernel
of the former.

There are now two questions that we wish to answer.

¢ Is an arbitrary default theory expressible in AE logic?
e Is an arbitrary AE base set expressible as a default theory?

To show that default theories are expressible in AE logic, we must provide a trans-
lation from an arbitrary default theory U to an AE base set A, such that U and
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A have equivalent extensions. For AE logic, we have three choices for the class of
extensions, depending on the groundedness condition — weak, moderate, or strong.
The best fit with default logic occurs for strong groundedness, and we define equiv-
alence of base sets accordingly: U and 4 are equivalent if every extension of U is
the same as some strongly-grounded extension of 4, and every strongly-grounded
extension of A is the same as some extension of U/. Obviously, U and A must have
the same number of extensions if they are equivalent. _

We may want to impose some restrictions on the translation from U to 4. The
strongest and most natural condition is that it be effectively computable, one-to-
one, and context-independent:— every sentence or default rule of U is effectively
translated into exactly one sentence of 4, independent of any other sentences or
defaults in UU. Let us call a translation of this sort lecal® The translation that
we propose, which follows from our reasoning in section 1 about the relationship
between default rules and AE sentences, is a local one. The main result of this
paper is that this translation yields an equivalent AE base set.

What about expressing AE base sets as default theories? Here we might expect
more difficulty because the structure of default rules is fixed, while the modal oper-
ator of AE logic can be arbitrarily embedded in a sentence. However, by reducing a
base set A to the normal form developed in section 3.2, we can find a local transla-
tion for it into an equivalent default theory U. So if we restrict our attention to the
strongly-grounded extensions, AE logic and default logic turn out to be essentially
the same, although their formal structure is very different.

5.2 Defaults as self-belief

We now define a local transformation from a default theory (W, D) to a set of
AE sentences A4, such that the default extensions of (W, D) are exactly the kernels
(the first-order part) of the strongly-grounded AE extensions of A. Thus (as we
prove), there is an exact correspondence between default extensions for (W, D} and
strongly-grounded AE extensions for A.

The transformation is:

a:MpB ... M3,

w

(LaA-L-fiA-- A-L-8,) Dw. (16)

As we mentioned in the introduction, this is the natural interpretation of defaults
in terms of introspective knowledge. A paraphrase of the AE sentence for agent

Tmielinski [6] defines the notion of a moedular translation: the translation of a default rule in
(W, D) cannot depend on W, but can depend on the presence of other defaults in D. All local
translations are modular,
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might be: “If I know that « is true, and I have no knowledge that any of the [;
are false, then w must be true.” The key phrase has been emphasized; it is in
reasoning about what is not known that the nonmonotonic character of AE logic
appears. However, the role of the other parts of the sentence (Le and w) also
deserves closer scrutiny; for example, why does w appear as the consequent, and
not Lw? From a technical point of view, the transformation (16) is the one that
gives a correspondence between default and AE extensions. We will comment more
extensively on the intuitions behind the exact form of the transformation, after the
basic results are presented.

For most of the rest of this section, we assume that there is at most a single
operator M in the antecedent of rules. The proofs can be stated much more
simply, and the needed modifications for the general case are obvious. In a default,
we allow either a or M to be missing; the corresponding AE sentence just deletes
the appropriate conjunct in the antecedent. The conclusion of the default must
always be present (defaults with no conclusion are senseless). Let D’ be the set of
sentences formed by taking the transforms of defaults D; we call the set {W,D'}
the AE transform of (W, D).

Now consider a particular default theory (W, D} and an associated extension
E =T(E). E is closed under first-order consequence, and hence is the kernel of a
unique stable set. This stable set is closely related to the AE transform of (W, D}:
it is a minimal stable set containing the AE transform. We prove this result as the
following proposition.

PROPOSITION 5.1 Let (W, D) be a defoult theory, with A = {W, D’} its AE trans-
form. Suppose E is an eziension of the default theory. Then E is the kernel
of & minimal stable set containing A and ~LE.

The minimal stable set of the above proposition is also an AE extension of 4
(recall that a stable set must be (weakly) grounded in A if it is to be an extension

of A).

PROPOSITION 5.2 Same conditions as the previous proposition. The set E is the
kernel of ¢ mintmal AFE eztension of A.

The minimal stable set is also strongly grounded in 4, if we consider the obvious
normal form for A (that is, the translation of a default rule given by Equation (16)
is "LaV L-f V- VL, Vw).

ProPOSITION 5.3 Same conditions as the previous proposition. The set E is the
kernel of a strongly-grounded AE eztension of A.
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The converse of this proposition is also true.

PROPOSITION 5.4 Let A be the AE transform of a default theory (W, D). If E is
the kernel of a strongly-grounded AE eziension of A, then E =T(E).

We collect the preceding two propositions into the following theorem, the main
result connecting AE and default extensions.

THEOREM 5.5 Let A be the AFE transform of a default theory A, A set E i3 a
default eztension of A if and only if it is the kernel of a strongly-grounded
AFE eztension of A.

Thus every default theory can be translated into an equivalent AE base set. The
extensions of the default theory correspond to the AE belief sets with the strongest
groundedness conditions.

5.3 Semantics

By virtue of the translation from default theories to AE logic, we are able to im-
port the semantics of AE logic in analyzing default theories. The semantics of AE
sentences is an interpretive semantics, in the sense that a sentence ¢ is true or false
in an interpretation |=;r. The interpretation of modal atoms is given by the modal
index T', according to Equation (8). The interpretations themselves are straight-
forward augmentations of standard first-order interpretations. The troublesome
characteristics of AE logic, from a semantical point of view, occur in the fixed-point
definition of extensions (Definition 2.1}, in which only interpretations containing a
certain modal index are considered. So, although it is hard to construct and analyze
extensions, all of our ordinary intuitions about the meaning of the language £ and
its semantics with respect to individual interpretations is still available.
As an example, consider the difference between the two default sentences

LBird(Tweety) A ~L—Fly(Tweety) > Fly(Tweety) (17)

and
Bird(Tweety) A ~L-Fly(Tweety) > Fly(Tweety) . (18)

The first sentence states that in any interpretation in which Bird( Tweety) is a belief
and ~Fly(Tweety) is niot a belief, Fly( Tweety) will be true. In default logic, the rule
which translates to this sentence is Bird( Tweety) : M Fly(Tweety) [ Fly(Tweety).
The antecedent of the second sentence is less strict: it states only that Bird( Tweety)
must be true. The second sentence permits case analysis of a type not sanctioned by
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the first. For example, suppose it is known that either Tweety is a bird, or Tweety is
housebroken (Houseb(Tweety)). In every interpretation in which —~Fly({Tweety) is
not a belief and the second default sentence is true, Houseb( Tweety ) V Fly( Tweety)
is true. On the other hand, nothing can be concluded by assuming the first default
sentence is true, because Bird( Tweety) itself may not be a belief.”

The distinction between (17) and (18) makes clear the reason why La must be
used to translate default rules. We can also answer a question posed earlier: why
does w appear in the antecedent of the AE translation, instead of Lw? The reason
is that, from the agent’s point of view, the conclusion w is the simple belief that
w is true of the world. Using Lw would mean that the agent concludes she has a
self-belief Lw, and she would have to reason further from that to the simple belief in
w. As we have pointed out in the discussions on moderate and strong groundedness,
such reasoning can lead to ungrounded justification of beliefs, and is to be avoided.

Another instance of the utility of interpretive semantics is in the concepts of
equivalence and substitution. Two formulas ¢ and ¢’ of £ are equivalent if they
have the same truthvalue in all models. Because the definition of AE extensions
is framed in terms of the interpretive semantics, ¢’ can be substituted wherever ¢
occurs in a base set A, without changing the AE extensions of A. We used this fact
extensively in arriving at the normal form for AE sentences in section 3.2.

For a final example of the use of equivalence, we turn to the literature of inher-
itance networks. These networks are meant to express class/subclass relationships,
and the inheritance of properties by default from a class to its subclasses. Touret-
zky (in [17, p. 34]) has offered a translation from his particular type of inheritance
networks into AE logic. To formally express the intent of the statement “P implies
that typically @ is unknown,” he uses:

PA-L(L-QV LQ) D ~L-QA-LQ (19)

However, from Example 3.1 we know that this is equivalent to a tautology, and thus
not a very satisfying translation.

"Etherington (3, p. 34] cites this as evidence that the second sentence seems more in accord with
our intuitions about the way defaults should work. However, there are some objectionable conse-
quences of using (18) as the formal representation of a default. For example, by simple propositional
manipulations, it can also be viewed as a default stating that nonflying things are not birds (Matt
Ginsberg originally pointed this out to the author). As can be seen from this example, the ques-
tion of the appropriateness of the formal system for representing our intuitions about defaults is a
complicated one, and is not a direct concern of this paper. However, a clear understanding of the
formal consequences of the representation can facilitate this discussion.



5.4 Expressiveness

The question of expressiveness can be phrased as follows: Is it the case that default
sentences of the type (18), or perhaps other AE sentences involving complicated
constructions such as embedded L operators, have no counterpart in default theo-
ries? On the face of it this would seem a plausible conjecture, since the L operator
is part of the language, while default rules are not. However, it turns out that AE
logic is no more expressive than default logic: there is an effective transformation
of any base set of AE sentences into a default theory, such that the default exten-
sions are exactly the kernels of the strongly-grounded AE extensions. To show this,
we rely on the fact (see Proposition 3.9) that every set of sentences of £ has an
equivalent normal form in which every sentence looks like:

-LaVLhV---VLE, Vw, (20)

where all of a, f;, and w are ordinary sentences. Any of the modal atoms may be
missing, but w is always present.

Given any set of L-sentences A in normal form, it is possible to effectively
construct a corresponding default theory (W, D), in the following way. Any w that
appears without other disjuncts is put into W. All other sentences are transformed
into defaults, using the converse of by Equation 16:

a:M-py... Mg,
” .

~LaVIBV- VLB Vw (21)

There is one slight asymmetry here, however. A normal form AE sentence could be
missing ~La, or all of the LF;’s. There is no provision in default rules for omitting
any part of the premisses. So we define an eztended normal form by first putting a
set of AE sentences into normal form, and then using the following two translations
to add disjuncts where necessary:

Lyv--- VL, Vw +— ~LTVLAHV---VLE, Vw

~LaVw = -LaVIilVw (22)

It is not hard to show that the consistent strongly grounded extensions of a set 4 in
normal form are the same as those of its extended normal form A’. However, A may
have an inconsistent extension which is not realized by A’: take A = {P,~LPV-P},
for example, which has the inconsistent stable set as its one strongly grounded
extension. The extended normal form A’ = {P,~LP Vv LL V P} has no strongly-
grounded extensions.

For any set of sentences A in extended normal form, we define a corresponding
default theory (W, D) using Equation (21). It is easy to see that A4 is the AE
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transform of (W, D}); by Theorem 5.5, these two have essentially the same extensions.
More precisely, we have proven the following theorem:

THEOREM 5.6 For any set of sentences A of L in extended normal form, there
is an effectively constructable default theory (W, D} such that E is a default
extension of (W, D) if and only if it is the kernel of a strongly-grounded
eztension of A.

So, suprisingly, default theories have the same expressiveness as AE logic over
the modal language £. However, some caveats should be noted. The extensions are
the same only if we restrict ourselves to strongly-grounded ones on the AE side. If
we wish to use, say, moderate groundedness as our condition on ideal belief sets,
then the translation into default logic is lacking in that some of the AE extensions
may not have corresponding default extensions.

A second caveat 1s that if we extend £ by allowing quantifying-in (i.e., expres-
sions such as Jz.Lé(z)), in all likelihood Theorem 5.6 will no longer hold. There
are a number of reasons to think this; perhaps the most compelling is Levesque’s
observation [7] that in the presence of quantifying-in, there are sentences of modal
depth greater than 1 with no equivalents in £;.

Given that AE logic can be embedded in default logic, we can translate various
types of defaults that have a natural expression in AE logic. The default rules
corresponding to the two types of defaults (17) and (18) are

Bird(Tweety) : M Fly(Tweety)
Fly(Tweety)

(23)

and
MPFly(Tweety)

Bird(Tweety) D Fly( Tweety)
Note that the second type of default (Equation 18), when translated into the default
rule (24), causes the atom Bird(Tweety) to appear not in the antecedent of the

default, but in the consequent.
Conditional defaults are expressed in £ by sentences of the form:

(24)

CDO(LaA-L-fDw) (25)
By simple propositional manipulations, this is equivalent to:

-LaV L-AV(C Dw), (26)
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which translates into the default rule
a:Mp
Cow '

(27)

The condition is expressed in the consequent of the default rule.
A default whose conclusion is a default can be expressed by:
LaA-L-8 D (La' A-L-F' D) (28)
Again, by propositional manipulations this can be put into the form
~LaV-La'VL-gVL-g V. (29)

The first two disjuncts can be combined into the K45-equivalent literal ~L{a A a').
The resulting default rule translation is

ahNao : MB, MB'

w

(30)

6 Conclusion

Given the current proliferation of nonmonotonic formalisms, it seems wise to es-
tablish comparisons among them, especially regarding expressiveness. The results
presented here show that there is an exact correspondence between AE logic over
L and default theories. There is a general, effective translation between the two
that is local: each sentence (or default rule) can be translated in isolation from the
others. The translation preserves theoremhood, in that the default extensions are
the first-order part of the strongly-grounded AE extensions.

The relationship between default logic and various forms of circumscription [10]
has been investigated by a number of researchers. Etherington [3] collects a number
of comparability results, and notes that there is a fundamental difference between
the minimal-model semantics of circumscription and the fixed-point semantics of
default theories. In particular, he cites the following points:

1. Default logic is drave in the sense that in the presence of competing defaults,
individual extensions will satisfy a maximally consistent set of defaults; in
contrast, a natural corresponding circumscriptive theory for defaults would
be cautious, inferring only what the competing extensions have in common.

2. Default logic can make nonmonotonic inferences about equality, and circum-
scription cannot.
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3. Circumscriptive statements can apply to all individuals, whereas default rules
are restricted to those individuals with names in the language.

4. In default logic, there seems to be no way to capture the distinction between
fized and veriable predicates in circumscription.

These results suggest that circumscription and default logic are incomparable,
in the sense that there is no local translation of one into the other that preserves
theoremhood.

What about the relationship between AE logic and circumscription? Because
AE logic is “brave,” and can make nonmonotonic inferences about equality (if we
allow an equality predicate in £), there is no local translation of AE theories into
circumscription. And as long as the language of AE logic is £, it will have the same
expressiveness as default logic, and the last two items seem to preclude any general
translation of circumscription into AE logic. By allowing quantifying-in in the
language, it is possible to construct AE statements applying to all individuals, and
so the third item may not present a problem. The fourth item remains, however,
and creates pessimism about the existence of a translation from circumscription
with fixed predicates.
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Appendix: Propositions and Proofs

This appendix contains all theorems, propositions, lemmas, and their proofs. Some
informal proofs have already been given in the main body of this paper, and are
not repeated here.

PROPOSITION 2.1 If A is a set of ordinary sentences, it has ezactly one AE ez-
tension T. Ty 15 the first-order closure of A.

Proof. We define the sets S(n) in the following iterative fashion:

5(00) ={seLlo| Al ¢}
S(ﬂ) ={¢eﬁn|A|=S(n—1) ¢}

Let T, be the set of sentences of T from £,, and let S be the infinite
union of all S(i). We will show that if 7' is an AE extension of A4,
T, = S(n); there is thus at most one AE extension 7', with Ty = S(0),
the first-order closure of A. We prove existence by showing that S is
always an AE extension of 4.

Let T be an AE extension of A. Obviously, Ty = S(0). Assume that
Tu-1 = S(n —1). We have:

T, ={del,|AEr¢}
={¢p€L.| A Fr._, ¢}
={¢ € Ln|AFEsna) o}

The second equality holds because the truthvalue of any sentence in £,

depends only on the subset of the modal index in £,,_;.
Let us define S by:

S'={¢| Alsg}.

- To show that S is an AE extension of 4, we will show by induction
that S = S’. Let us assume for the moment that S, = S(n), that is,
S restricted to £, is just the set S(n). For the base step, it is obvious
that S§ = S(0) = Sp. Now assume that S!_; = S,_;. Then we have:

S, ={¢€Lls| AEs ¢}
={¢€Ln|4Es,., ¢}
= {‘Jb €Ll,|A |=S(n-1) ‘f’}
= 5(n)
=Sﬂ
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Now we show that S, = 5(n). As preliminary facts, observe that:

S(k) ={¢ € Lr|AEsw-) ¢}
={¢ € Lr | A FEsyuy ¢}
= S(k + l)k 3

and hence, by simple induction, for any & and 7 > 0, S(k¥) = S(k + 7 ).

We already know that S(n) C S,. Assume that S, is larger than
S(n), so there is a sentence ¢ such that ¢ € S, and ¢ € S(n). Let the
modal depth of ¢ be k, where k < n. Forall j > 0, S(k+7)r = S(k), and
so ¢ must be in S(n), a contradiction. Therefore S, cannot be larger
than S(n), and must be equal to it.

PROPOSITION 2.2 A set T is an AE extension of A if and only if it saiisfies the
equation

T={¢|AULTU-LT = ¢} .

PROPOSITION 2.3 (MOORE)

Every AE eztenston of A is a stable set containing A.
PROPOSITION 2.4 Every stable set I 25 an AE extension of [g.

Proof. For any set I', it mnust be the case that
T={¢|Tk¢}.

If T is stable, then both LT' C T and —~LT C T, so we have

I'={¢ | TULTU-LT | ¢} .

By the argument preceding proposition 2.2, we know from this that

I'={¢|Tré}.

Finally, only the ordinary sentences of I' are important in determining
whether =, I is true, and so

L= {¢]|ToFr¢}.

PROPOSITION 2.5 (MOORE)

If two stable sets agree on ordinary formulas, they are equal.
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PROPOSITION 2.6 Let W be a set of ordinary formulas closed under first-order
consequence. There is a unique stable set I' such that Ty = W. W is called
the kernel of the stable set.

Proof. By Proposition 2.1, there is a unique AE extension 7 of W.
T is a stable set (Proposition 2.3), and by the discussion preceding
Proposition 2.1, Tp is the set of ordinary sentences logically implied by
W. Since W is FO-closed, T, = W. ‘

ProOPOSITION 2.7 A set T is an AFE extension of A if and only tf it satisfies the
equation

T ={¢| AULT,U~LTo =ss ¢} -

Proof. If T is an AFE extension, then by Proposition 2.3 it must be
stable, and from the above discussion the fixed-point equation reduces
to

T:{¢|A|=T¢’}:

which is just the definition of an AE extension of A.

On the other hand, suppose T satisfies the fixed-point equation. Tp
is a set of ordinary formulas closed under first-order consequence; hence
by Proposition 2.6 they are exactly the ordinary formulas of a unique
stable set; so LTy and LT, determine a unique stable set, which we
call S. The fixed-point equation reduces to

T={¢|AFs¢}.

T will be an AE extension of A if we can show that T' = S5} note that
we already know that the kernels of T' and § are equal.

We define the set A’ as the the set of sentences in A, where L¢ is
replaced everywhere by T if ¢ € 5, and by L if ¢ € 5. By the truth-
recursion rules for L valuations, it must be the case that ;s A if and
only if =55 A'. The sentences of A’ are all ordinary, and their FO
closure is just Tp. Hence ;5 A if and only if =75 Tp. Since Tp = Sq,

we have

T={¢]|S s ¢}-
By Proposition 2.4, the right-hand side defines the stable set S, and so
T=25.

PROPOSITION 2.8 A set of sentences i3 moderately grounded in A if end only if it
is ¢ mumimal AFE eztension of A.
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Proof. Assume that T is a minimal AE extension of A. By definition,
it obeys the equation

T={¢|AFEr¢}.

Because T is minimal for A, there is no other stable set containing A
which does not contain some element of T3. Hence LAU-LT, determine
the unique stable set T, and the above equation can be rewritten as

T={¢|AULAU-LT, ss ¢} .

On the other hand, assume that T is moderately grounded in A.
First we show that if ¢ € T, where ¢ is ordinary, then L¢ € T. Consider
any L valuation (I,T) that satisfies A U LA U ~LT,. By the properties
of stable sets, AULAU-LT, C I'. By Propositions 2.4 and 2.7, we have

I ={¢|Tokr¢}
= {¢ | ToU LTy U -LT; [=ss ¢} ,

so we must have I'g U LTg U = LT, Ess AULAU ﬂLTg; and since we
know that AU LAU LTy Ess ¢, it must be that ¢ € . Since I was
arbitrarily chosen, AU LAU-LT, =ss Lo.

Now the proof proceeds along the lines of Proposition 2.7. We have

T={¢| AULAULT,U-LT; [ss ¢},

and because Ty is closed under first-order consequence, by Proposition
2.6 it determines a unique stable set T" with T"y = T;. We rewrite the
above equation as

T={¢|AULAE ¢}.

The assumption LA is irrelevant, because A C T"; hence, by the reason-
ing in the proof of Proposition 2.7,

T={$|Tokrd},

which just defines the stable set TV, and T = T'. T is thus an AE
extension of A, since

T={¢|AFré}.

T must also be minimal for 4; if it weren’t, then there would be
another stable set containing A (and hence LA) and not containing any
of Ty; hence AU LA U ~LT, would not determine a unique stable set,
which we have shown to be the case.
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PROPOSITION 3.1 (MOORE)
A setT 1s an AFE eztension of A if and only if it satisfies the equation

T={¢|AULTU-LTF ¢}.

PROPOSITION 3.2 A set is stable if and only if it 1s an S5 sel.
PROPOSITION 3.3 For any ¢ € £, g5+ ¢ if and only if =ss ¢.

Proof. This proposition is true if every S5% valuation has an equivalent
L valuation whose modal index is a stable set, and wice versa. Let
{w, W) be an S5% valuation, and " the S5 set defined by W. By the
truth-recursion definition (11), g5+ L¢ if and only if ¢ € I'. Hence
{(w, W) is equivalent to the L valuation {w,I'}. By Proposition 3.2, T is
a stable set.

On the other hand, let {I,I') be an L valuation with I" stable. T is
also an S5 set; let W be a set of possible worlds such that 'y are exactly
the ordinary sentences true at every world in the set. Then =i wy Lo
if and only if =(7,ry L¢, and these are equivalent valuations.

LEMMA 3.4 Let R be an equivalence relation on W, end let the successors of w
be the subset W C W. Then the Kripke valuation {w, W, R} is equivalent to
the S5 valuation (w, W').

Proof. The lemma will be true if the truth-recursion schemes (12) and
(11) are identical. The first parts obviously are. For the second part,
note that the elements w’ such that wRw' are exactly the set W’. Hence
the second clause of (12) can be rewritten to be identical with that of

(11).

PROPOSITION 3.5 A waluation is an S5% valuation if and only if it is ¢ TE valu-
ation.

Proof. Let {(w,W,R) be a TE valuation. Let W’ be all successors of w,
that is, the set of w’ such that wRw’. Because R is euclidean, it is an
equivalence relation on W’ (any two elements a and b of W’ have wRa
and wRb, and by the euclidean condition aRb is true). By the lemma
above, {(w, W, R} is equivalent to the S5% valuation {w, W').

Let {w, W) be an S5 valuation. Let R be a relation that is an
equivalence on W, and also for any element @ € W, wRa. By the
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lemma above, {w, W) is equivalent to the Kripke valuation {w, W, R}.
We must now show that R is transitive and euclidean.

Let aRb and bRe. If a € W, then aRc because R is an equivalence
on W. If a € W, it must be w, so that b € W and ¢ € W, and bRe by
the equivalence of R on W.

Let aRb and aRe. If ¢ € W, then 6 € W and ¢ € W by the
equivalence property of R, and hence 8Re. If a € W, it must be w, and
again b€ W andce W.

PROPOSITION 3.6 A set T is an AFE extension of A if and only if it satisfies the
equation

T={¢|AULT,U-~LTFgys ¢} -

It is @ minimal (moderately-grounded) extension of A if and only if it satisfies

the equation —
T={¢| AULAU-LTotgqs ¢} -

PROPOSITION 3.7 Euwery sentence of L, is equivalent to a sentence of the form

(Ly V) A
(L2 vV wg) A
A
(Ln V wy)

where each L; ts a disjunction of modal hiterals on ordinary sentences, and
each w; 13 ordinary.

Proof. Using only first-order valid operations, a sentence of £; is put
into prenex normal form:

Q1$1 e ann M b (31)

where @); is either V or 3, and M is a propositional matrix containing
modal and ordinary atoms. Note that the modal atoms themselves may
contain embedded quantifiers, e.g., LIz P(z).

We will use the following equivalences:

Qz([-]Lé V) = [-]Lo V Quyp

Qz([-]Lé A ) = [-]Lg A Qzyp
dz(¢ V) = dz¢ V dzvp
V(¢ Ap) =Vzd AVzy
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where [-]L¢ is either L¢ or ~L¢. The first two are consequences of the
fact that L¢ contains no free variables. The second two are first-order
consequences (see Robinson [15]).

Returning to the prenex form (31): suppose Q. is an existential
quantifier. Then put M into disjunctive normal form, and using the
equivalence for 3z, distribute 3z onto each of the disjuncts. The matrix

. now looks like ‘
dz(Ly Awy) V

(L Awy) V (32)
cen v

where L; are conjunctions of modal literals and w; are ordinary. By
using the first two equivalences, the quantifiers can be pushed through
the modal literals (modal atoms or their negations), giving:

Lindzw, V
LyAdzw, V (33)
. vV

If Q. is 2 universal quantifier, then the same operations can take place,
except that the matrix is put into conjunctive normal form.

The same process can be repeated for ¢J,—;, where we now consider
expressions of the form @,z w; to be atomic for the purposes of putting
M into conjunctive or disjunctive normal form. In this way all quan-
tifiers can be pushed around the modal atoms, and the end result is a

sentence of the form
(LiVwr) A

(Ln Vwg}
where each L; is a disjunct of modal literals and each w; is ordinary.

ProrosITION 3.8 Every modal atom Lo, where ¢ is from Ly, 1s equivalent o a
sentence of L.

Proof. We will use the following equivalences:

L(¢A¢)= Lo ALy
LLé=L¢
L-L¢=-LoV ILL
L(Lé¢vy)= LoV Ly
L(~L¢Vvyp)y=-LeVLLV L
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All of these are theorems of K45,
By Proposition 3.7 and the first equivalence above, a modal atom
Lé, where ¢ is in £, can be put into the equivalent form

L(Ll \'% wl) A
L(Lg V UJQ) A
L{L, Vw,)

where each L; is a disjunction of modal literals on ordinary sentences,
and each w; is ordinary. By applying the equivalences repeatedly, this
can be reduced to a sentence in L.

PROPOSITION 3.9 Every set A of L-sentences has o K45-equivalent set in which
each sentence is of the form

~LaVIBV- VLB Vuw, (35)

with «, B;, and w all being ordinary sentences. Any of the disjuncts, ezcepl
for w, may be absent.

_ProPoSITION 3.10 If T s a strongly grounded ecziension of A, it s moderately

grounded 1n A.

Proof. Since T contains A and LA, we can add these as premises to
the fixed-point equation for strongly-grounded T":

T={¢|AULAUAULA U-LT, l=ss ¢} .

Since A4 subsumes A’ and LA subsumes LA’, this reduces to the equation
for a moderately-grounded extension.

PROPOSITION 5.1 Let (W, D) be a default theory, with A = {W, D'} its AE trans-
form. Suppose E is an extension of the default theory. Then E 1is the kernel
of @ minimal stable set containing A and ~LE.

Proof. The stable set S whose kernel is E contains W. Consider the
AE transform La A ~L-f D w of an arbitrary member d of D, and
suppose it is not in 5. Then w is not in F, « is in E, and -3 is not
in E. But this means that d is not satisfied by I'(E), a contradiction.
Hence S contains all of D', the AE transform of D. Because its kernel
is E, it also contains ~LE.
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To show that S is minimal, assume that there i1s some other set
V C E that is the kernel of a stable set containing A and =L E. Consider
an arbitrary member La A—=L—f8 D w of D’; because this is a member of
the stable set, either a is not ¥V, = is in V (and hence E), or wisin V.
If this is the case, then all defaults D of the default theory are satisfied
in V, and so I'(E) € V by the minimality of I". But this contradicts
I{(E)=E.

PROPOSITION 5.2  Let (W, D) be a default theory, with A = {W, D'} its AE trans-
form. Suppose E i3 an ezlension of the default theory. Then E is the kernel
of a minimal AE eztension of A.

Proof. By Proposition 5.1, E is the kernel of a minimal stable set 5
containing A and —~LE. Now consider the set

{$|AULAU=LE |=ss ¢} .

We want to show that this set is equal to S. By the preceding proposi-
tion, S is a minimal stable set containing A and ~LE. In fact, it is the
only stable set with this property, because the kernel of any other stable
set containing them must be a subset of E, and hence § would not be
minimal. Thus LA and ~LE pick out the unique stable set S. We can
rewrite the above set as

{¢|4 [=s ¢} .
Let us call this set 7. The modal index, S, is fixed, so we can rewrite it
as

{¢|To =5 8} -

If we can show that Ty = E, then by Proposition 2.4 it must be the case
that T = S, and S is an AE extension of A. Since it is a minimal stable
set containing A, it is also a minimal AE extension, by Definition 2.3.

But Ty must be the same as F, since it is just the first-order closure
of W and the consequents w of all AE transforms whose antecedents are
satisfied by the modal index S. This is exactly the same as I'(E'), which
by hypothesis is equal to E.

PROPOSITION 5.3 Same conditions as the previous proposition. E is the kernel of
a strongly-grounded AE exztension of A. :
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Proof. Consider the subset of defaults Iy C D whose conclusions are
in E. E is still a default extension of (W, D;}. Therefore, by Proposi-
tion 5.2, the AE transform A; = (W, D]) has a minimal extension 7’

~whose kernel is E. Since AE extensions are uniquely determined by
their kernels, 7/ = T'. Thus we have:

T ={¢| A1 ULA U-LT f=ss 4} .

Since A; are all of A whose ordinary part is contained in T, 7' must be
strongly grounded.

PROPOSITION 5.4 Let A be the AE transform of a default theory (W, D). If E is
the kernel of a strongly-grounded AE extension of A, then E =T(F).

Proof. By Proposition 2.8, a strongly-grounded extension T' of 4 obeys
the equation _
T = {¢| AyULA, U~LT, f=ss 6},

where A; are all of A whose ordinary part is contained in 7T'.

We now show that I'(7p) cannot be a proper subset of ;. Assume
that this is so. By definition, ['(Ty) satisfies all defaults D. Let Iy C
D be those defaults whose transform is 4;. Consider the transform
La A-L-f3 D w of any member of ;. Because the default is satisfied,
either w is in ['(Tp) or « is not in I'(7p) (we already know that -/ is not
in Ty). Hence every member of D (and 4; = D} U W) is in the stable
set .S whose kernel is ['(Zp). But by Proposition 3.10, T' is moderately
grounded and hence (by Proposition 2.8) a minimal stable set containing
A;, a contradiction. Thus I'(Tp) is equal to or a superset of Tp.

To 1s closed under first-order consequence and contains W. It also
satisfles all of the defaults D. Consider a default a : M3/w; because its
AFE transform is in T, and so either w is in T, « is not in Tp, or =f is in
Ty. These are precisely the conditions for the satisfaction of the default.

Since I'(Tp) is the least first-order-closed set containing W and sat-
isfying D, and since it must at least contain T, it is equal to Tg. Thus
Tp is a fixed point of I' and a default extension of {W, D).

THEOREM 5.5 Let A be the AE transform of a default theory A. A set E is a
default eztension of A if and only if 1t is the kernel of & strongly-grounded
AFE eztension of A.
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THEOREM 5.6 For any set of sentences A of L in eztended normal form, there
i3 an effectively constructable default theory (W, D} such that E is a default
eztension of (W, D) if and only if it is the kernel of a sirongly-grounded
extension of A.
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